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The transport of heavy, polydispersed particles and the inter-phase transfer of kinetic 
energy due to the viscous drag forces is measured experimentally in a turbulent 
shear layer. To study the effect of the large-scale vortex pairing event, the shear 
layer is forced simultaneously with a fundamental and subharmonic perturbation. 
It is shown that vortex pairing plays a homogenizing role on the particulate field, 
but the amount of homogenization is strongly dependent upon the particle’s viscous 
relaxation time, the eddy turnover time, as well as the time the particles interact 
with each scale prior to a pairing event. Thus, even though the smaller size particles 
become well-mixed across the large eddies, the larger sizes are still dispersed in an 
inhomogeneous fashion. It is also found that the kinetic energy transfer between 
the phases occurs inhomogeneously with energy being exchanged predominantly in a 
sublayer just outside the region of maximum turbulence intensity. The kinetic energy 
transfer is shown to exhibit notable positive and negative peaks located beneath the 
cores and stagnation points of the large-scale eddy field, and these peaks are shown to 
result from the irrotational velocity perturbations created by the vortices. This energy 
exchange mechanism remains a prominent process as long as the Stokes number of 
the particles relative to the vortices is of order unity. 

1. Introduction 
Particle-laden turbulent flows are often encountered in a wide variety of natural and 

engineering applications. Of fundamental importance to these two-phase applications 
is the ability to predict not only how the particulate is dispersed by the turbulence, 
but also how the presence of the particulate may affect the evolution of the turbulent 
carrier fluid. The conservation equations governing the development of a two-phase, 
turbulent flow require a description of the inter-phase mass, momentum, and energy 
transport. Owing to a lack of information on the details of the complex processes 
involved, these terms are often postulated by ad hoc scaling arguments and intuitive 
reasoning. The two-phase, turbulent, planar mixing layer is one such example 
where inhomogeneities and anisotropies of the underlying flow make such closure 
assumptions of limited or no use. Thus, the experimental characterization of the 
dispersion and inter-phase kinetic energy transport in a prototypical, turbulent shear 
layer represents an important step towards the general formulation of two-phase 
flows. 

Since the work of Winant & Browand (1973) and Brown & Roshko (1974), it 
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is well known that a turbulent shear layer exhibits the presence of large-scale, 
coherent, vortical structures superimposed on a small-scale three-dimensional motion. 
Furthermore, it is known that the kinematic interaction of these large-scale eddies 
(also. known as vortex pairing) is responsible for the growth of the mixing region 
(Winant & Browand 1973). 

Previous experimental (Lazaro & Lasheras 1992a,b) and numerical (Martin & 
Meiburg 1994; Crowe, Chung & Troutt 1988; Chein & Chung 1988) studies of the 
early evolution of a two-phase turbulent shear layer have shown that the large-scale 
coherent motion plays a dominant role in the particulate dispersion process. As the 
mixing layer grows through subsequent vortex pairings, the question which remains 
to be elucidated is how this event contributes to the inter-phase transport terms, and 
thus, to the particulate dispersion process. Towards this goal, we have conducted an 
experimental study of a turbulent, plane free shear layer in which the pairing event 
has been localized by forcing with a principal and the first subharmonic wave. In 
order to isolate the characterization of the kinetic energy from the mass and thermal 
energy transfer terms, we studied an isothermal (non-vaporizing) polydispersed water 
spray in a two-dimensional shear layer. Conditional sampling was used to provide a 
detailed examination of the dispersion and kinetic energy transfer between the phases 
due to the particle's drag both prior and during the vortex pairing event. Following 
this approach, we are able to provide not only a detailed characterization of the 
inter-phase kinetic energy transfer when the shear layer is dominated by the presence 
of one large coherent scale, but also to investigate the evolution of this energy transfer 
as a new scale, twice the original size, emerges through the pairing process. 

2. Experimental facility and measurement techniques 
The experimental facility utilized the output of a multi-phase, low-speed wind 

tunnel to form a free shear layer with the ambient, stagnant air (figure 1). The facility 
was the same one used in the studies of Lazaro & Lasheras (1989, 1992a,b), and 
was modified only in the course of routine operative maintenance. The test section 
itself was 26 cm wide, 45 cm deep, and 100 cm long. A two-dimensional instrument 
traverse allowed measurement access to the first 33 cm past the splitter plate in the 
streamwise (x) direction, and to 19 cm in the cross-stream (y) direction. 

In order to increase the coherence of the naturally evolving large-scale vortices 
of the shear layer, a forcing system was used to add a velocity perturbation at the 
beginning of the test section. The system consisted of a speaker attached to a small 
plenum chamber (25 x 12 x 2 cm) which terminated at the end of the splitter plate 
with a narrow, spanwise slot. To obtain a consistent pairing within the confines of the 
measurement region (- 33 cm), the flow was forced with both a fundamental and its 
first subharmonic frequency. The fundamental frequency was selected to be 140 Hz, 
which was close to the most unstable frequency of the unforced shear layer (Lazaro 
& Lasheras 1992~). After sampling the amplified signal sent to the speaker, the shape 
of the waveform was found to have the functional form 

sin (2nfst) + 1.93 sin (4nfst - A+), 

where fs is the first subharmonic frequency (70 Hz), and A 4  is the phase difference 
between the fundamental and subharmonic, measured to be 212". Yang & Karlsson 
(1991) have observed that for equal-amplitude waves, A+ - 90" results in a 'tearing' 
growth of the vortices, whereas all other phase angles resulted in a pairing event 
similar to one observed by Winant & Browand (1973). Thus, as can be confirmed 
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I 1 

FIGURE 1. Schematic of wind tunnel facility 

by the experimental data (see figure 3), a repeatable pairing event occurs in the test 
section of the facility. 

Two different optical measurement techniques were used to quantify the evolution 
of the shear layer and the spray: instantaneous laser attenuation and phase Doppler 
anemometry. In developing the first technique, Lazaro & Lasheras (1992~) showed 
that the attenuation of a laser beam passed through a dilute spray of spherical 
particles can be described by 

where Z/Z, is the ratio of the attenuated/unattenuated laser beam intensity, L is the 
beam’s path length through the spray, a is the average droplet volume concentration 
along the beam, D is the droplet diameter, and pdf(D) is the spanwise average volume 
probability density function of the spray. In this experiment, a 5 mW He-Ne laser 
was spatially filtered to produce a nominal 3.5 mm beam diameter. A LeCroy 8212A 
data logger was used to simultaneously digitize the laser attenuation and the speaker 
forcing signal using a sampling rate of 5000 Hz and record lengths of 32768 points, 
producing time traces spanning the passage of more than 450 subharmonic structures. 

Measurements were also made with an Aerometrics two-component Phase-Doppler 
Particle Analyzer (PDPA) (Bachalo & Houser 1983; Sankar & Bachalo 1991). This 
instrument operates on the same principle as a laser Doppler velocimeter (Drain 
1980) with the added capability of measuring the size of the scattering droplet. This 
allows the PDPA to collect statistics on the size and two components of the velocity 
of droplets passing through the probe sampling volume. Except for a few locations in 
the external region of the mixing layer where the data rates became extremely slow 
owing to the sharp decrease in particle concentration, each data record was composed 
of 10000 samples. 

The initial conditions selected for this study are presented in figure 2. Figure 2(a) 
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FIGURE 2. Initial conditions of facility. (a) Mean and r.m.s. streamwise gas velocity profile at 
x = 0.7 cm. -, ci; ----, u'. ( h )  Normalized laser attenuation profile at x = 0 cm. Profile 
normalized by average attenuation at y = -4 cm. (c) Cross-stream profiles of Sauter mean diameter 
(SMD, -) and number mean diameter (NMD, - - - - )  at x = 0.7 cm. (d) Number probability 
distribution function, pdf(D), of the spray at x = 0.7 cm, y = -3 cm. 

shows the uniformity of the carrier gas velocity with a mean free-stream value 
of approximately 18 m s-', a 1 crn boundary layer level thickness, and an initial 
momentum thickness (6,) of approximately 1.5 mm. The r.m.s. velocity measurements 
show that the free-stream turbulence intensities are less than 2%, with the presence 
of a highly turbulent boundary layer (tripped by the rough absorbency material and 
the forcing fluctuations) having intensities on the order of 17%. Figure 2(c) shows 
that the Sauter mean diameter (SMD), 0 3 2 ,  and number mean diameter (NMD), D ~ o ,  
as defined by 

n+ I 

Dmpdf(D) dD 

D"pdf(D) dD 

also have relatively uniform distributions of approximately 35 and 10 pm, respectively, 



and a boundary layer level thickness of 1 cm. A representative size distribution 
(figure 2 4  shows that it is quite polydispersed, spanning approximately two decades 
from 1 to 100 pm. Finally, the normalized mean attenuation measurements of 
figure 2b show the overall droplet concentration to be constant over the cross-stream 
coordinate, with a decay in the boundary layer (due to particle settling effects in the 
slower stream) and a slight drop-off in the deep free-stream for y < -35 mm. These 
measurements, in conjunction with the size distribution, gives a free-stream particle 
volume fraction of - 1.5 x 

The evolution of the carrier gas was extensively measured in the absence of the 
spray by seeding both the ambient air and the high-speed stream with fine water 
droplets and using the PDPA to measure their size and velocity at various regions 
in the flow. During the measurements, all of the air jets in the atomizer grid were 
kept on, but their water supply was cut off to prevent seeding bias problems between 
the two streams. Two-dimensional velocity bias corrections were made to the data 
utilizing a scheme similar to that proposed by McLauglin & Tiederman (1973)t. 

t At the time of the measurements, the PDPA did not provide particle residence times inside the 
probe volume which would have allowed for more accurate corrections. 

4 (deg.) r#J (a%.) 
FIGURE 3. Conditionally averaged r.m.s. velocity contours and velocity vector plots for the carrier 
gas. Flow is from right to left for the lower stream (y < 0) and U = 9 ms-' has been subtracted 
from the streamwise component to show the vortex structure. (a) x = 6 cm, ( h )  x = 10 cm, 
(c) x = 18 cm, ( d )  x = 30 cm. 

Particle dispersion and kinetic energy transfer in a two-phase shear layer 153 
, ,  , I  \ 

Particle dispersion and kinetic energy transfer in a two-phase shear layer 153 
I \  , I  \ 

Particle dispersion and kinetic energy transfer in a two-phase shear layer 153 
I \  , I  \ 

Particle dispersion and kinetic energy transfer in a two-phase shear layer 153 
I \  , I  \ 



154 K. T. Kiger and J.  C. Lasheras 

The large-scale vortices and their pairing can be observed in greater detail through 
conditional-averaged velocity vector plots and the conditional-averaged r.m.s. velocity 
(figure 3). Initially, two vortices of slightly different strength (owing to the finite ampli- 
tudes of the principal and subharmonic forcing components) form at the fundamental 
wavelength. The vortices grow, initiate a pairing around x = 12 cm, and exit the mea- 
surement section (x = 33 cm) as a single subharmonic structure. The total r.m.s. is 
constructed from the sum of each velocity component's variance within a single 
phase-averaging bin. This represents the presence of small-scale random fluctuations 
and contributions due to temporal gradients in phase-averaged velocity between the 
beginning and ending times of the individual bin. As can be seen from figure 3, the 
r.m.s. effectively marks the cross-stream extent of the mixing layer and shows the 
location of the vortex cores and braid regions in the flow. 

3. Results and discussion 
3.1. Particulate evolution: pre-pairing dispersion 

Information on the time evolution of the instantaneous particle dispersion process 
was obtained through measurements of the laser attenuation. The coherence of 
the particle concentration field in the large-scale vortices can be analysed by the 
attenuation Eulerian temporal correlation coefficient, which is written as 

l T  
lim 1 4(t)4(t + z)dt 
T+CX 

&t-r(z) = I rT  , (3.1) 

where <(t) is the measured attenuation. For our flow, Rqt(z) is a periodic function 
composed of two frequencies (the fundamental and subharmonic) with a slightly 
decaying amplitude (figure 4). As seen by comparing the subharmonic peaks (z = 14 
and 28 ms), the amplitude is never less than 0.84, indicating a very high degree of 
repeatability between structures. The evolution of the R"(z) also connotes a change 
of dominant length scale within the test section. Initially, the fundamental frequency 
is dominant, but by the end of the test section only the subharmonic remains, 
demonstrating the occurrence of a pairing event. The location of the pairing within 
the test section can be more precisely defined by considering the development of the 
fundamental and subharmonic peaks of the attenuation spectra (Huang & Ho 1982) 
(figure 5). The spectral peaks show that the fundamental is dominant throughout the 
first 12 cm of the shear layer, growing, saturating, and then beginning to decay. At the 
end of this region, the subharmonic becomes dominant, marking the initiation of the 
pairing. This conveniently defines the regions of interest for our flow: (I) the region of 
the developing fundamental disturbance (x = 0 to 12 cm), (11) the transitional pairing 
event (the region where the subharmonic and fundamental scales have comparable 
amplitude) (x = 12 to 20 cm) , and (111) the resulting subharmonic structure (x = 20 
to 30 cm). 

The large degree of structure repeatability demonstrated by the Rcc(z) implies that 
it is feasible to obtain a clear picture of how the large-scale vortices disperse the 
droplets by performing an ensemble average over a large number of structures. Using 
the waveform sent to the forcing generator as a phase reference signal, one can 
construct a conditional-average of the instantaneous signal, giving a portrait of an 
average dispersion structure. The conditional average, denoted by (), is defined for 
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the attenuation as follows (Kiger 1995): 

where 4; is the phase angle of the forcing function over one subharmonic period, t is 
the time of the recorded signal, and Z(&,t) is the conditioning function that selects 
what region of the data signal is used to produce the average. For our experiment, 
the conditioning function is a periodic square wave pulse that has a duration equal 
to the bin width of the averaging, A$, and a frequency equal to the subharmonic 
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forcing component: 

, i = 1 to P ,  (3.3) 1 
0 for all other t 

for ( i -  l /P < t mod l/fs < i/P 

where P is the number of bins in one wavelength ( P  = 27c/A4). 
One of the goals of this work is to quantify the role vortex pairing plays in the 

dispersion process, especially in contrast with the mechanisms found in the initial 
developing region. Lazaro & Lasheras (19924 studied this case in detail and presented 
measurements sampled from a shear layer forced with only a single frequency. Owing 
to the similarity of the experimental facility, their work will be used as a direct 
comparison between the two cases. Dispersion characteristics found to be consistent 
with the regime studied by Lazaro & Lasheras (19924 will henceforth be referred to 
as the single frequency forcing case, whereas the results from the current study will 
be denoted as the pairing mode forcing case. 

In region I of the pairing mode forcing case (figure 6), we observe the same 
dispersion characteristics found in the single frequency forcing results : namely, particle 
dispersion across the mixing layer is manifested in the form of a well defined streak 
originating near the free stagnation point, and is entrained over the core of the vortex 
(cf. figure 6b, the pattern is clearly depicted within the larger vortex on the left-hand 
side; the asymmetry is due to the finite subharmonic component initially present). As 
the flow evolves, the streak grows, increasing in concentration and azimuthal extent 
as the droplets begin to respond to the coherent fluctuations. Thus, it is clearly 
evident that the entrainment process due to a single dominant frequency produces 
strong inhomogeneities across the vortex and leaves the core depleted of all but the 
smallest droplets. This initial interaction process leading to the non-uniform particle 
concentration can be understood in view of the magnitude of the forces acting on the 
particle (drag, buoyancy, etc.) as it interacts with a single vortex structure (Lasheras 
& Tio 1994). 

In the transition region where both scales begin to interact, region 11, the attenuation 
images provide an overview of the droplet dispersion during the pairing process 
(figures 6c-e). Here the pairing is initiated, and the smaller vortex on the upstream 
side is beginning to amalgamate with the larger, downstream vortex. As the pairing 
takes place, the droplets that had been entrained by the smaller streak are dispersed 
into the rapidly evolving core of the subharmonic structure. This results in a final 
structure (region 111, figure 6 f )  that seems to be quite different from the original one 
- the streak is much broader' and more diffuse while the core is no longer depleted 
of particles. Thus, it is noted that the pairing tends to have a homogenizing effect 
on the dispersion, reducing the particle concentration gradients within the vortex. 
It should be realized, however, that the particles are not passive scalars, and each 
droplet size responds to this process differently. These size-dependent effects are not 
readily apparent in the attenuation measurements, which are quantities integrated 
over all size classes in the flow. The size-dependent dispersion considerations will be 
expanded upon in the next section. 

Further evidence of the contrasting mixing processes taking place in the two regions 
can be seen through the evolution of the r.m.s. attenuation profiles (figures 7 and 8). 
For single frequency forcing, the r.m.s. profiles were found to exhibit a peak in the 
lower central region of the mixing layer which increased throughout most of the test 
section (figure 8a). At x = 200 mm, however, the amplitude underwent a sudden 
decrease, and rapidly moved into the lower edge of the mixing region (figure 8a,b). 
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Lazaro & Lasheras attributed this behaviour to the presence of a well-developed, 
extended streak. Initially, the largest attenuation fluctuations occurred when the 
beam alternately passed through the low-attenuation region in the vortex core and 
the high-attenuation region in the base of the streak. As the streak evolved and the 
concentration increased along its length, the fluctuation levels increased with it. The 
peak decay and location shift occurred when the streak developed to such a point that 
it impacted on the upstream neighbouring vortex. The r.m.s. level was then reduced 
due to the lengthened duty cycle of the heightened attenuation and the maximum 
shifted to a location deeper in the spray. The existence of an external plateau was 
also attributed to an extensive streak development, as the r.m.s. was stabilized by the 
increased signal duty cycle and attenuation decayed along the streak. 

Comparing the above results with the pairing mode forcing shows the similarities 
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FIGURE 7. Normalized attenuation r.m.s. cross-stream profile evolution (a) single frequency forcing 

(Lazaro & Lasheras 1992b), ( b )  pairing mode forcing. 

and differences between the two cases. Not surprisingly, the initial profiles have the 
same peak and plateau-shaped region (figure 7b) .  Further downstream, the peak 
continues to grow monotonically with no sudden shifts in location (figure 8c,d), while 
the prominent plateau is erased during the pairing event. The above results indicate 
that the streak development is altered by the pairing, and that the streak reconnection 
observed in the single frequency forcing case never occurs once the pairing is initiated. 
Thus, it is already becoming evident that the final subharmonic structure produced 
by the pairing is not similar to the one produced by dispersion due to a single 
length scale. The history of the flow through the transitional process has significantly 
altered the final distribution structure. This gives additional support to the somewhat 
subjective characterizations shown in the attenuation images. 

The last set of measurements to be presented as a direct comparison with the 
single frequency forcing results are those of the time-averaged SMD (figure 9). For 
the single frequency forcing case, the initial profile decays sharply through the lower 
edge and then increases slightly at the external edge of the shear layer. Further 
downstream, the 'valley' region increases, all the while maintaining a location close 
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FIGURE 8. Normalized attenuation r.m.s. peak development for single frequency forcing: (a)  peak 
amplitude, ( b )  peak cross-stream location (Lazar0 & Lasheras 1992b) and for pairing mode forcing, 
( c )  peak amplitude, and ( d )  peak cross-stream location. 

to the centre of the shear layer. This valley is a result of averaging over the depleted 
core region, which contains only the smallest size droplets. The external recovery can 
then be attributed to the presence of larger particles in the streak region. As the 
flow evolves, larger particles continue to respond and migrate through the base of 
the streak, increasing the minimum size of the ‘valley’. In the lower sublayer of the 
spray, a small overshoot is evident during the late stages of development. This is due 
to the very large droplets’ inability to follow through the stagnation point flow and 
results in an accumulation of the larger sizes. 

Comparing our data to these results, the main differences in the SMD resulting 
from the pairing are the following. 

(i) The location of the minimum starts in a similar location as the single frequency 
forcing case, but after the pairing moves to a location on the outside region of the 
shear layer. 

(ii) The minimum size in the ‘valley’ is initially 10-20% greater than the single 
frequency case, but eventually relaxes to similar sizes. 

(iii) The overshoot in the lower sublayer is much more pronounced. 
Point (i) provides additional evidence for the argument that larger particles entrained 
by the smaller streak before pairing are subsequently deposited into the core of the 
paired vortex structure. With a greater number of large droplets in this area, the 
average Sauter mean diameter minimum will then be shifted towards the external 
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region. The last two points are most likely due to differences in the initial forcing 
conditions and slight changes in the initial particle concentration boundary layer 
thickness. 

3.2. Particulate evolution : dispersive size eflects 
In the preceding subsection, the quantification of how the different sized droplets 
were dispersed during the pairing was limited to the evolution of the time-averaged 
SMD profiles. While these results were valuable as a direct comparison with previous 
experimental data, they do not give detailed information about how the various 
droplet sizes are interacting with the large-scales throughout the pairing event. This 
information, however, can be observed in the phase-averaged normalized number 
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Size range (pm) Size class Stokes number 
2 <  Do <10  scalar St  - 0.016 
10< D1 <20  small St - 0.098 
20 < 0 2  < 40 intermediate S t  - 0.39 
40 < 03 < 100 large S t  - 1.56 

TABLE 1. Size discretization. 

frequency, q(Di,  4 j ;  x). The normalized number frequency is defined from the statistics 
gathered by the PDPA through the construction of a joint probability distribution 
function between the phase angle and the droplet size: 

(3.4) 
nij(x) = 1 to S (number of size classes) 

S P  { = 1 to P (number of phase bins), 
g(Di, Cpj; x) = 

C C n i j ( x )  
i=l j=1 

where ni,(x) is the number of particles occurring within the size range Di f dD/2 and 
within the phase angle 4j  A4/2 at the location x. Looking at a fixed x, we define 
the normalized number frequency to be : 

By normalizing in this manner, deviations in q from unity then indicate changes with 
respect to the undisturbed free stream in the probability of finding a particle of size 
Di over the y and Cp domain in any given sample. 

In the present work, M = 15 and S = 4 with the size ranges divided as listed 
in table 1. Here the Stokes number, St (which is the ratio of the droplet’s viscous 
relaxation time to that of the flow fluctuation time scale, St = p,D2/(18p,vz,)), 
of each size class was based upon the fundamental frequency and the average 
size of the droplets within the given size range. The choice of size range for 
each class was a compromise to keep the sampling bins large enough to contain a 
reasonable number of droplets and at the same time to be able to discern differences 
in their development due to size effects. Even so, our initial droplet size distribution 
was heavily weighted towards the scalar and small size classes (which accounted 
for approximately 80% by number of all the particles), while the large size class 
constituted roughly 4% of the spray in the undisturbed free stream. Considering 
that each sample contained 10000 points, this does present a sizable amount of 
statistical uncertainty in the largest size range (approximately 20%). It will be 
observed, though, that even with this limitation, clear trends for this size are obtained. 

3.2.1. Size dispersion evolution in the presence of a single length scale. Region I 
Examining contours of q at the end of region I (figure 10) shows results that 

are characteristic of single frequency dispersion. As each one of the surfaces shows, 
the large-scale streak forms a peaked high-probability ridge, which moves further 
away from the vortex core and closer to the spray free stream as the size is in- 
creased. For the largest size, this peak occurs within the free stream and shows 
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class, Do; (b)  small size class, D1; (c )  intermediate size class, D2; ( d )  large size class, D3. 

very little significant development along the streak. This feature results in a size 
decay along the streak centreline and a size increase with radial displacement from 
the vortex core, and is consistent with previous experimental (LLzaro & Lasheras 
1992~;  Longmire & Eaton 1992) and numerical findings (Martin & Meiburg 1994; 
Chein & Chung 1988). From the previous work, it is known that this size-dependent 
dispersion can be parameterized by the Stokes number and is a result of increasing 
inertial effects in the presence of a combined vortex and stagnation point flow. For 
small Stokes number ( S t  a 1) the particles follow the flow closely and are entrained 
along the full length of the streak and into the vortex core. As the droplet size, 
and hence Stokes number, is increased, the droplets are no longer able to follow 
the flow and require a longer time to adjust to the disturbance. Hence, the extent 
of their azimuthal entrainment is retarded compared to droplets of smaller Stokes 
number and they tend to move along the outer edge of the vortex due to cen- 
trifugal effects. Additionally, as a particle with a slow response time is entrained 
towards a stagnation point, its trajectory will deviate from the fluid streamlines and 
overshoot into the opposing stream (Martin & Meiburg 1994). This causes the 
droplet to oscillate between the two streams, slowing its entrainment away from 
the stagnation point, and results in the accumulation of larger sizes, as observed 
above (figure 10d). 
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FIGURE 11.  Contours of the normalized number frequency at x = 18 cm, region 11: (a) scalar size 

class, Do; ( b )  small size class, D1; (c) intermediate size class, D2; (d) large size class, D3. 

3.2.2. Size dispersion efects of vortex pairing. Regions II and 111 

The details of the dispersion during the pairing event can be determined by 
examining q at a location in the transitional region, x = 18 cm (figure 11).  As 
the pairing starts, one can observe that the smaller vortex is pushed downward 
and the scalar sized particles are drawn down into the high-speed layer. This is 
substantiated by the formation of a decreased probability hole on the lower right 
side of figure l l (a ) .  The larger particles cannot respond to the pairing this quickly 
and are disturbed only a small amount (figure l l b ) .  For the largest size particles, the 
pairing process is reduced to the lumping of the two undeveloped streaks in a manner 
somewhat similar to that observed by Longmire & Eaton (1992). 

The resulting subharmonic size distribution is also observed to be dissimilar to 
structures created by a single dominant frequency. Examining the number frequency 
of each size class (figure 12) shows what a diverse impact the pairing has produced. 
The scalar size has experienced a very pronounced homogenization - peak probability 
values now fluctuate about 30% at any fixed cross-stream location as compared with 
150% during the single frequency region. This is to be expected for particles with 
St Q 1, as their quick response time will allow them to take advantage of the strong 
mixing that occurs during the pairing process. As the size increases, the resulting 
homogenization decreases. For the intermediate and large sizes, we once again see 
the streak and depletion regions that are characteristic of heavy-particles coherent- 



164 K .  T. Kiger and J .  C. Lasheras 

structure dispersion (albeit with a shape slightly different as remarked above). Thus, 
it is noted that the homogenizing influence of the pairing is strongly linked to the 
response time of the droplets and the driving frequencies of the flow, resulting in 
complex separation effects. 

It should be noted at this point that the above dispersion measurements are 
the result of the specific pairing event produced by our particular combination of 
phase and amplitude of the forcing signals. Even so, the trends observed are fairly 
general and would be qualitatively similar under different forcing conditions. The 
quantitative differences would then stem from parameters controlling the dispersion 
that are associated with the details of the pairing event. In addition to the Stokes 
numbers based on the dominant frequencies (Stl, and St2), the other two parameters 
that impact on the dispersion of the individual size classes are: the fundamental 
development time, zl, and the subharmonic lifetime, z2 (figure 13). 

As was discussed earlier, and shown in the results of Lizaro & Lasheras (1992b), 

FIGURE 12. Contours of the normalized number frequency at x = 30 cm, region 111: (a) scalar size 
class, Do; ( b )  small size class, D , ;  ( c )  intermediate size class, D2; (d )  large size class, D3. 
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FIGURE 13. Schematic description of time scales determining the extent of particle dispersion in 
the free shear layer. The lines show the development of the kinetic energy of the fundamental ( f l ) ,  

first subharmonic (fz) ,  and second subharmonic (f3) frequencies of the large-scale structures. Note 
correspondence to figure 7, showing extended downstream development. 

larger Stokes number particles require additional time to adequately respond to fluctu- 
ations. This size-dependent time lag was responsible for the azimuthal streak variation 
in the region dominated by the fundamental disturbance. If the fundamental growth 
had been allowed more time prior to pairing (larger zl), then there would have been 
more extensive streak development and larger particle dispersion in the intermediate 
sizes ( S t  - 0.4). This would have resulted in more extensive homogenization for this 
size during the pairing, as the inner streak is dispersed throughout the core of the 
paired vortex. Also, with an increased fundamental development time, there would 
have been more homogenization in the scalar class even before the pairing event, 
although to what relative extent cannot readily be determined. 

The second parameter of importance, namely the subharmonic lifetime, would 
determine how long the particles can interact with the paired structure before the 
next pairing event takes place. This is of significance for the larger particles ( S t  - 1 )  
ingested during the pairing; namely, if given a sufficient amount of time they would 
once again be centrifuged towards the periphery of the vortex structure. This radial 
redistribution process, however, was not observed in our case owing to the lack of 
significant large-particle development prior to pairing. 

In surveying the available literature, it has been noted that particles with a Stokes 
number of the order unity tend to be dispersed by the coherent structures further than 
corresponding fluid elements. As discussed above, this did not occur in our particular 
flow (cf. figures 10d, l l d ,  and 1 2 4 .  This is in contrast to numerical results obtained 
by Chein & Chung (1987), who found that the pairing event increases particle 
dispersion in comparison to the pre- and post-pairing flows. Our findings, however, 
do not contradict these results, but instead reflect the fact that their simulations 
considered groups of particles that were released in small regions in space and time, 
while our flow continually disperses droplets from all regions in the high-speed 
stream. Thus, even though certain regions of the structure may be very effective at 
dispersing particles, the net effect of the whole structure does not result in amplified 
dispersion properties. This is confirmed by the numerical simulations of Martin 
& Meiburg (1994), who showed that dispersion integrated over the subharmonic 
wavelength during the pairing event exhibits a reduced value in comparison to single 
frequency forced flows. Their results also indicate that no particles are dispersed 
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further than fluid elements prior to or during the pairing. Only well after the pairing 
is amplified dispersion observed. 

3.3. Kinetic energy transfer between the two phases 
In the analysis of two-phase, turbulent flows, one of the most pressing obstacles is to 
effectively model the transfer of linear momentum and kinetic energy between the two 
phases. Often in numerical computation of these flows, the transfer models rely on 
algebraic, first-moment closures (Elghobashi & Abou-Arab 1983). In many cases, one 
must use educated guesses for the resulting coefficients or attempt to model them by 
fitting the parameters to the limited experimental data currently available. In order to 
gain an understanding of the underlying physical processes and to assess the validity 
of any such closure models, it is important to obtain experimental information on 
the instantaneous fluctuations of all the flow variables. This would enable one to 
have direct information on how the cross-moments vary throughout the flow, and 
judge the performance of the models. Current experimental methods, however, do not 
allow such detailed, complete measurements. In turbulent shear flows, however, where 
large-scale structures are receptive to controlled perturbation, conditional sampling 
offers a very effective tool to produce ensemble-averaged portraits of how the closure 
terms are affected by the large-scale structures. It is for these reasons that we present 
measurements of the ensemble-averaged kinetic energy transferred between the phases 
in a turbulent free shear layer. 

Following physical reasoning (Williams 1988), the instantaneous kinetic energy 
transfer per unit volume per unit time to the dispersed phase (spray) from the carrier 
gas can be written as 

3 ~ p D  (u(x,  t )  - u ( D ,  X, t)) * u(D, X, t)f(D, X, t)dD, (3.6) 

where p is the dynamic viscosity of the gas, u(x, t )  is the gas velocity, u ( D , x , t )  is 
the velocity of a droplet of size class D, and f ( D ,  x, t) is the number size probability 
density function (non-normalized) of the spray. The above expression assumes that 
the dominant force acting on the droplet is due to viscous drag, and that the added 
mass, Basset force, lift force, etc. are small in comparison. It should be noted that 
expression (3.6) is not equal to the total sink (or source) of kinetic energy on the 
continuous phase, as it does not reflect the added viscous dissipation due to the drag 
force acting on the drops. In addition, there are also other terms which account for 
the redistribution of potential to kinetic energy due to accelerations of the continuous 
flow ( D u / D t  + g), which for most cases of high-inertia particles can be neglected. In 
our mixing layer, the Reynolds number based on the relative velocity of the droplets 
is less than 1 for the majority of the spray, but for the largest droplets it is typically 
around 4, and can be as high as 20. Although using the Stokes drag solution will 
incur a slight underestimate of the drag for the extreme size and velocity cases, it is 
a good approximation for most of the spray. 

Information regarding the large-scale contribution to the kinetic energy transfer 
can then be obtained by taking a conditional- or phase-average of (3.6), resulting in 

( P ( 4 ) )  = 3rcpD ( (u - u )  e u f )  dD. (3.7) 
0 

For a detailed analysis of the kinetic energy equation, and an evaluation of all the 
interaction terms which appear in its phase-averaged form, the reader is referred 
to Kiger (1995). The experimental characterization of this quantity poses great 
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difficulties since there is no instrument available that can instantaneously measure 
the gas velocity, the particulate velocity, and the size distribution. However, these 
quantities can be averaged individually, which will allow us to make a good estimate 
through the approximation 

( (u  - u )  . o f )  ((4 - (4) * (4 (f) * (3.8) 

As mentioned in $3.1, owing to the periodic nature of the large scales this is quite a 
good approximation for our flow. 

Corresponding to the size groups in table 1, the velocity was then conditionally 
averaged according to size to obtain (u(Di, x, $)), i = 0,1,2,3. Since we are interested 
mainly in the large-scale fluctuations, it can be shown? that the velocity of the scalar 
sized droplets can be used to faithfully represent the velocity of the carrier gas. It then 
remains to calculate (f(Di, x, 4) )  dD, the conditionally-averaged concentrations of the 
different size classes. This is done using laser attenuation data in conjunction with the 
coarse number distributions obtained from the PDPA. Converting the PDPA number 
p.d.f.’s to volume p.d.f.’s and using (2.2), the volume fraction of particles within the 
size range of D & dD/2 is given by 

(3.9) 

Similarly, the number concentration of this size class is the volume fraction divided 
by the average volume of a single particle within that size class: 

(3.10) 

Thus, the experimental realization of the kinetic energy transferred to size Di per unit 
volume per unit time is given by 

and the total energy can then be calculated as 

(3.12) 

where D30i is the volume-average diameter of the size bin i. 
Before proceeding to discuss our measurements, it should first be pointed out 

that there are several sources of error associated with using (3.11) to measure the 
conditionally averaged kinetic energy transfer given by (3.7). The first source of error 
is the statistical uncertainty of the data. The largest size had the fewest samples, 
ranging from 45 to 5 samples per bin. As a worst case example, the uncertainty in the 

t If one uses the complete equations of motion to examine the response of a droplet to periodic 
fluctuations, as was done in Lazaro & Lasheras (1989), it can be readily determined that the 
smallest size class, Do, will respond to the higher-frequency, large-scale fluctuation (140 Hz) with 
/ I ~ p I l / l / ~ g l l  > 0-98. 
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Size range (pm) Size class Approximate peak value and 
uncertainty (WmP3), x =6 cm 

1 0 <  D1 < 2 0  small 10 f 2 

CQ Total 55 f 7 

20 < D z  < 40 intermediate 30 & 3 
40 < 03 < 100 large 17 f 2 

TABLE 2. Kinetic energy transfer uncertainty estimation. 

velocity of the largest size was typically 4% in the regions where the energy transfer 
was sizable?. For the small droplets, this uncertainty was much smaller, having an 
average value of 1%. To estimate the uncertainty in the energy transfer, the statistical 
convergence of (3.11) and (3,12) was examined in the lower mixing layer boundary. 
The approximate peak values and average uncertainty for each of the size classes is 
shown in table 2. The uncertainty was quantified as the amount of variation observed 
in the energy transfer as the data converged to their final values. 

The last two deviations arise from how the PDPA measures the p.d.f. distributions. 
The first of these errors is due to the fact that the effective probe detection volume 
increases with the size of the droplet owing to its increased scattering cross-section. 
Our Aerometrics PDPA uses an empirical algorithm to correct for this error during 
post-processing. We did not perform similar corrections as the small benefits gained 
would be outweighed by the increase in error caused by the added manipulations. The 
second discrepancy results from the fact that the PDPA measures the size distribution 
in a swept volume, whereas the attenuation uses the instantaneous volume occupied 
by the entire beam. If there is a large mean velocity bias between the various sizes, 
then the p.d.f. will be skewed toward the higher speed particles in proportion to 
the velocity differences between the sizes. In this experiment, this effect will only be 
sizable when the mean velocity becomes close to the same order of magnitude as 
the slip velocity between different sizes, say I(u(Di) - u(Dj))l / Iu(Dj)l < 0.2, which 
will not occur until one reaches the low-speed portion of the mixing layer where the 
concentration of droplets approaches zero. 

Even taking into account the above shortcomings, we are confident that the 
conditional-averaged data measured in this way show distinctive trends which reveal 
the underlying physics of the particle dynamics, and which also represent the best 
currently available data for modelling purposes. In the following section we will 
discuss the conditional-averaged kinetic energy transfer between the liquid and gas 
phases as a function of particle size, beginning with the evolution of the dominant 
fundamental disturbance, leading through the pairing event, and finishing with the 
later stages of development of the resulting subharmonic structure. 

3.3.1. Fundamental-dominated f low: role of a single vortex 
The kinetic energy transfer between the phases in the initial flow region exhibits the 

relevant features of the transfer processes that are basic characteristics of the large- 
scale structures present in the shear layer (figure 14). Perhaps the most surprising fact 
is that most of the energy exchange does not take place in the central region of the 
mixing layer as might be expected, but instead occurs in a sublayer just outside the 

t The uncertainty peaked around 20% in the external region of the shear layer, but here the 
concentration of droplets was extremely small, and hence the energy transfer went to zero. 
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FIGURE 14, Contours of the conditional-averaged total kinetic energy transfer to the dispersed 
phase at x = 6 cm, region I. Note the three concentrated peaks forming in a sublayer beneath the 
coherent structures: peak 1, (4 = 30", y = -0.75 cm); peak 2, (4 = 130", y = -1.25 cm); peak 3, 
(4 = 290", y = -1.25 cm). Units are in Wm-3. 

mixing region and extends deep into the free stream of the spray. It is readily apparent 
that the transfer in this region is characterized by large, structured inhomogeneities 
with both positive and negative transfer regions which form as the dispersed phase 
locally absorbs and restores energy to the carrier fluid. Comparing the energy transfer 
plots with those of the attenuation (figure 6 )  and the velocity field (figure 3) indicates 
that the positive peak is located under the core of the vortex structure, while the 
negative peak occurs beneath the free stagnation point located in the braid region 
between successive vortices. Upon further comparison with the r.m.s. velocity field in 
figure 3, it is found that the kinetic energy transfer maxima are also outside the region 
of the peak velocity fluctuations, which is in contrast to what might be assumed in 
more traditional turbulence modelling. This then poses an interesting question : if the 
turbulent Reynolds stresses are not responsible for this energy exchange, then what 
is the source of the maxima? All of the above experimental evidence indicates that 
the kinetic energy transfer peaks are the result of two effects. 

(i) The droplet concentration field is inhomogeneous across the mixing layer and 
quite dilute in the external region of the flow. 

(ii) There are peaks in the slip velocity field due to the droplets' response to a 
periodic forcing by distributions of lumped vorticity in the mixing layer. 
The presence of the vortices creates an irrotational perturbation velocity in the free 
stream that decays inversely with distance from the mixing region (figure 15). For 
the streamwise velocity component, this perturbation will be a maximum beneath the 
vortex core, with a corresponding minimum beneath the stagnation region between the 
two vortices. If it is assumed that the coherent structures are moving at approximately 
the mean speed of the two layers, then the particles outside the shear layer in 
the uniform stream will be convected past them at a relative frequency of f' = 
f (U2 - U I ) / (  U2 + Ul) .  When a droplet initially moving at a steady velocity is exposed 
to this alternating velocity field, it will try to follow the disturbance with varying 
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FIGURE 15. Conditional-averaged streamwise velocity profiles at x = 6 cm, showing the average 

velocity increase at the core, (p = 121”, and the deficit at the braids, 4 = 25“. 

amounts of success depending on its relative Stokes number, St’ = plD2f’/(18p,v). 
This sets up slip velocities in the direction of the particle’s motion and creates the 
observed pattern of the kinetic energy transfer. Additional evidence for this will 
be presented when we consider the effects of the droplet size on the kinetic energy 
transfer. The fact that this mechanism of kinetic energy transfer exists should come 
as no surprise; rather, the interesting point is what prevents the central mixing region 
(with the maximum fluctuation levels) from making a sizable contribution? The 
answer to this lies in the details of the concentration field (approximately given by 
the attenuation, figure 6) and the dot product of the droplet velocity with the slip 
velocity (figure 16). There it can be seen that even though the slip velocity is at a 
maximum in the external mixing region (approximately twice the corresponding value 
at the observed energy transfer peaks), the absolute value of the droplet velocity 
and the droplet concentration is so low that it does not produce any significant 
energy transfer. Additionally, in between the two peaks there is a region where the 
concentration and slip velocity are large, but the vector product (u - u )  * u  is small 
owing to the strong lateral velocity fluctuations of the vortex. Finally, there is a 
region in the central mixing layer on the lower edge of the vortex core where the 
velocity vector product does exhibit a peaked minimum, but again the concentration 
is too small to produce a sizable kinetic energy transfer. This negative vector product 
peak results from the steep velocity gradients around the core as well as the particle’s 
inertial ‘memory’ of the high-speed free stream. In the initial developing region, the 
concentration of particles in the streak near the core is too low for this mechanism 
to have any impact, but as will be seen, this region makes a slight contribution in the 
later development. 

Since it has been shown in the previous subsections that the particle size plays a 
dominant role in the dispersion process, it is of paramount interest to also determine 
how the different size classes contribute to the total kinetic energy transfer. Upon 
examination of the energy transfer for each of the sizes (figure 17), it is seen that 
the overall pattern of the peaks and valleys is preserved for each size, with slight 
differences in the location and relative proportion of each size’s contribution. When 
comparing the magnitudes of the these peaks, it is evident that there is a distinct 
ordering of the magnitude based on size, with the greatest contribution coming from 
the intermediate size, followed by the largest size, and then finally the smallest. The 
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FIGURE 16. Conditional-averaged velocity vectors and dot product of absolute droplet and relative 
slip velocity of the intermediate size, D2, at x = 6 cm. (a) Solid vector: slip velocity, 24" = 1 
m s-l; dashed vector: absolute velocity, 24" = 18 m s-'. ( b )  Isocontours of the velocity dot product, 
(u - u )  u.  Units are in m2 ss2. 

ordering of the peak magnitude is influenced by the Stokes number through its 
connection with the magnitude of the slip velocity. The larger the Stokes number, 
the greater the slip velocity and hence greater energy transfer. The drop-off in 
concentration of the largest Stokes number droplets then eventually balances the 
increased slip velocities and results in a specific ordering of the peaks as noted 
above. In addition to the differences in magnitude, the locations of the peaks all 
shift downstream (lower phase angles) as the size is increased. This temporal shift of 
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FIGURE 17. Conditional-averaged kinetic energy transfer for the different size classes at x = 6 cm, 
region I:  ( a )  small size class, D I ;  ( b )  intermediate size class, D z ;  (c) large size class, D 3 .  Units are in 
W mp3 

the peaks location can also be consistently explained by Stokes number arguments. 
For the three size classes considered, the average relative Stokes numbers based on 
f i  = 140 Hz are approximately 0.1, 0.4, and 1.6 for the small, intermediate, and 
large classes respectively. Using the equation of motion for an isolated particle, it 
is possible to obtain analytical expressions that describe the steady-state response of 
the particle to a periodic disturbance (Hjelmfelt & Mockros 1966). The outcome 
of such an analysis for the given particles result in phase differences of 28", 60", 
and 70" ( 1 4 ,  30", and 35" on the subharmonic scale shown in the figure) between 
the scalar sized droplets and the larger size classes. Examining the particle response 
velocity measured in the flow (figure 18) shows that the measured phase lags are 
approximately 15", 25", and 45" (+7" based on bin width) which agrees quite closely 
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FIGURE 18. Conditional-averaged streamwise velocity component for each size class at x = 10 cm, 
y = -1.5 cm, showing the amplitude decrease and phase lag between the sizes. 

with the predictions. Discrepancies between the results can be explained by: (i) the 
uncertainty in the waveform shape, (ii) the largest size droplets will not be able to 
attain a steady-state response, as the transient time scale is of the same order of 
magnitude as the evolution time, and (iii) the fact that the flow is not composed of 
a single frequency - even though the fundamental is dominant, there is some finite 
contribution from the subharmonic. 

3.3.2. Vortex pairing event and resulting subharmonic structure 
Knowing that the vortex pairing plays a dominant role in different dispersion 

properties of the droplets depending on their size, it is also of interest to quantify 
how the energy transfer occurs during this transition. Questions that are raised by 
knowledge gained in the previous subsections include the following. How does the 
competition of a second flow scale affect the kinetic energy transfer process? Once the 
flow is back to a single dominant scale (this time twice as large), will the mechanism 
still be the same? Finally, can we use this information to infer what might take place 
further downstream in the mixing layer, after several pairings have occurred? 

During the initial stages of the shear layer development, the peaks of the energy 
transfer identified in the previous section displayed a continual increase in magnitude 
(figure 19). From the mechanism described previously this can be ascribed to an 
increase in the circulation within the core of the spanwise rollers as they continually 
remove vorticity from the braid region (Corcos & Sherman 1984). This vorticity 
intensification increases the strength of the vortex and hence heightens the fluctuating 
velocities perceived by the droplets in the free stream. When the pairing begins, the 
peak levels are observed to decrease and maintain a reduced amplitude throughout 
the rest of the test section. The reason for this decrease can be explained primarily 
by the growth of the subharmonic length scale and the resulting decrease in the 
relative Stokes number, increasing the particles’ ability to respond to the fluctuations. 
In addition to this, the vorticity in the core after the pairing does not immediately 
attain the same concentrated distribution that it had after the initial roll-up, and 
hence could also contribute to a loss of velocity fluctuation in the free stream. If one 
follows the location of the peaks throughout the pairing (figure 20) it can be seen that 
the peaks track with the location of the dominant vortex core and stagnation points 
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FIGURE 19. Evolution of the amplitude of the three dominant kinetic energy transfer peaks 
identified over one subharmonic wavelength. 0, peak 1; A, peak 2;  0,  peak 3 (see figure 14). 
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FIGURE 20. Evolution of location of dominant kinetic energy transfer peaks in the (y,d)-plane. 
Ax between points = 4 cm. 0, peak 1; A, peak 2; 0, peak 3 (see figure 14). 

of the flow, all the while remaining close to the edge of the sublayer. The positive 
peak initially formed by the larger fundamental vortex is seen to be obliterated in 
the early stages of the pairing event, and instead favours the growth of the positive 
peak located under the smaller vortex. By the end of the pairing, we are left with a 
positive peak located well into the free stream, and a negative peak that appears to 
have encroached somewhat deeper into the large-scale streak structure shown earlier. 

The pairing event also has an effect on the magnitude of the peaks for each size class 
and produces a reshuffling of the size responsible for the dominant energy transfer. 
In our case the flow conditions were such that the large size became the dominant 
transfer group for the positive peak (figure 21a). This is again consistent with a 
reduction of the relative Stokes number, and the low-pass filtering characteristics 
of the droplet’s amplitude response (see Lazaro & Lasheras 1989). This reshuffling, 
however, did not appear to occur in the negative peak (figure 21b). Instead, all three 
peak levels seemed to reach somewhat similar values. The equalization of the negative 
peaks can be consistently explained by the increased concentration of smaller sizes in 
the core due to the pairing event. As was noted earlier, the velocity vector product 
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exhibited a minimum in this region (strong transfers from the particles to the gas), 
and hence, the increased concentration of the small droplets shifts the peak kinetic 
energy transfer towards the vortex core. The large sizes, however, accumulate near the 
stagnation point and thus reduce the peak energy transfer near the core (figure 22). 

What then does this imply for the continued evolution of energy transfer in the 
mixing layer? The results of the above subsections indicate that the peaked sublayer 
pattern is a dominant transfer mechanism as long as the vortices maintain a minimum 
intensity and the relative Stokes numbers of the particles in the spray are at least 
O( 1). Successive pairings increase the structure size and continually decrease the 
relative Stokes number. As this occurs, the sublayer transfer by the smaller particles 
decreases to negligible values, leaving contributions mainly due to the larger droplets. 
Eventually, the large scales grow to a point where all droplet sizes of the spray 
follow the large-scale fluctuations. When this occurs, a secondary mechanism may be 
responsible for the kinetic energy transfer between the phases as the Stokes number 
will most likely be O(1) for some scales present in a turbulent mixing layer. This is 
further aided by the fact that the homogenization of particles throughout the large- 
scale structure is greatly enhanced by the decrease in the relative Stokes number, 
creating increasing concentrations in regions where the particulate interact with the 
smaller scales. In the case of higher void fractions, this may result in a transfer process 
which could affect the development of the flow as kinetic energy is redistributed into 
a region near the braids from beneath the core of the vortex. 

FIGURE 21. Kinetic energy transfer peak amplitude growth for each size class: (a) positive peak 
beneath vortex cores, peak 3; ( b )  negative peak near braid region, peak 1. 
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FIGURE 22. Conditional-averaged kinetic energy transfer of the paired subharmonic vortex (x = 30 
cm, region 111) for each size class. Units are in W mP3. (a) Small size class, DI ; ( b )  intermediate size 
class, D2; (c) large size class, Dj. 

4. Conclusions 
The measurements of the velocity and particle concentration fields in a polydis- 

persed, particle-laden, turbulent mixing layer confirm the early observations that the 
large-scale eddies are primarily responsible for the particle dispersion process. In 
addition, we found that through the mechanism of vortex pairing the particle concen- 
tration field is progressively homogenized as particles entrained by nearby vortices 
are redistributed inside the resulting subharmonic structure. The homogenization 
resulting from this process indicated not only a strong dependence on the particle 
size and dominant eddy time scale, but also on the time between pairing events. 
Specifically, the fundamental development time, TI, controls the growth of each size 
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class along the initial streak and hence the amount of homogenization attained after 
the pairing. The time between pairing, z2, determines whether or not the subharmonic 
structure will redistribute larger particles away from the core where they had been 
deposited by the pairing process. 

It was also found that both prior to and during the vortex pairing event, the kinetic 
energy transfer between the phases due to quasi-steady viscous drag on the particle 
is a highly anisotropic process. In the early stages of the evolution, where the flow 
is dominated by a single, large, eddy scale, we found the somewhat surprising result 
that most of the kinetic energy exchanged between the phases occurs in a region 
outside the mixing layer and does not coincide with the regions of the maximum 
velocity fluctuations of the carrier gas. Instead, the transfer is manifested as clearly 
defined positive and negative peaks existing beneath cores and free stagnation points 
of the vortices. This mechanism is the result of the particulate’s response to the 
irrotational velocity perturbation fields set up in the free stream by the array of 
large-scale vortices. Furthermore, it is found that the central region is excluded as a 
prominent transfer area owing to its lower concentrations as well as regions of strong 
lateral slip velocity which are not aligned with the droplet’s velocity. 

The contribution of each size class to the kinetic energy transfer is also linked to 
the size as well as the concentration of each size family. The maximum contribution 
is produced by the balance between increasing slip velocity due to particle inertia 
and the eventual decrease in concentration dictated by the spray’s size distribution. 
The pairing event results in a decrease of the energy transfer, as the growth of the 
subharmonic introduces a reduced relative Stokes number that is half the size of the 
initial one. The doubling of the dominant scale also changes the size class which is 
responsible for the dominant energy transfer as a new slip velocity and concentration 
balance are formed. 

Finally, it is speculated that the above mechanism will remain a significant source 
of kinetic energy transfer as long as the large scales are maintained and the relative 
Stokes numbers based on these scales are of order unity. As the pairing continues 
to reduce the large-scale slip velocities and the homogenization of the particles is 
increased, additional sources of transfer will likely take place in the braid region 
where the concentration is increasing owing to the origin of the dispersion streaks. 
It should also be noted that the kinetic energy measurements presented here only 
reflect contributions due to a quasi-steady Stokes drag force. In regions where the 
flow scales approach the same order as the size of the particles, there may be other 
important factors influencing the kinetic energy transfer between the phases. 
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